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ABSTRACT

A mathematical expression for combining the entire

failure rate curve is derived based on the assumption that

the failure population is composed of three subpopulatians.

early, chance, and wearout. A graphical method is provided

for separating the subpopulations and determining the para-

meters of the model. The expression is then applied to

observed failure data in three detailed examples and in

each case the model is shown to represent the observed data

at the .05 significance level using the Kolmogorov-Smirnov

Test. Two BASIC language computer programs are provided to

simplify the use of the proposed model. The proposed ex-

pression is compared with techniques presently used to model

failure data and is shown to be superior in three ways:

1. It is more accurate than methods presently in use.

2. It's greater flexibility permits the modeling of

data which is beyond the capabilities of present failure

modeling techniques.

3. The proposed model yields essential information

for managers as well as theoreticians concerning failure

periods and underlying failure causes, information which

is obscured by present modeling methods.
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INTRODUCTION

This study has two purposes. The primary purpose

is to propose a general mathematical model, derived from

reliability theory, which will predict military electronic

equipment component failure rates more precisely than cur-

rent models. A subsidiary purpose is to test the hypothesis

that the proposed model will, as a result of the nature of

its derivation, provide a mathematical means of isolating

the underlying causes of component failure as a possible

alternative to the costly and time consuming technique of

physically examining each failed item.

Reliability may be defined as, "The probability of a

device performing its mission adequately for the period of

time intended under the operating conditions expected to be

encountered" (1). Equipment reliability is one of the bases

for procurement of military hardware and is a central con-

sideration for the allocation of maintenance resources. The

reliability of a new item of military electronic equipment

is a function of the individual failure rates of its compon-

ent parts. Hence, a more precise component failure rate

i1
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mcdel would produce a resultant increase in the accuracy of

end item reliability predictions.

The theoretical basis for current failure rate

models must be considered before fully understanding why

there is still room for improving model accuracy. Funda-

mental reliability theory indicates that three distinct

failure phenomena occur during the operational life of

components of military electronic equipment. These pheno-

mena are infantile, deterioration, and chance failures. In-

fantile failures occur early in component life and normally

components failing in this mode are cousidered to have been

substandard prior to operation. Deterioration failures

occur late in component life, during the wearout period,

and are the result of physical or chemical uging. Chance

failures are caused by randomly occurring stresses that ex-

ceed component strength. These failures are not a function

of component age, but are as likely to occur In early li 4 e

as in the wearout period. Chance failures are the only

failure phenomena to occur during the period of component

age between the end of early life and the beginning of

wearout. It is during this period that it is most economical

to operate components and therefore the period has been

named component useful life. Figure 1.1 is a graphical

representation of failure rate versus component age. It is
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noLeworthy that each of the three failure periods exhibits

an individual 1Iallure raLe characLerlsLic which Is dccr•as-

ing during early life, constant during useful life, and in-

creasing during wearout. The result of the combination of

these three failure rate periods is the nonmonotonic failure

rate curve or more commonly, the bathtub curve shown in

Figure 1.1.

Although the failure behavior described above is

widely accepted in Reliability Engineering literature and

provides the basis for much of classic Reliability Theory,

very little has been done to combine the entire failure rate

curve mathematically by the use of a unified expression.

Instead the failure population is usually assumed to exhibit

only one or possibly two of the three failure rate periods.

There are three methods by which this assumption is applied:

1. The early failure period may be neglected by

assuming that the population is fully burned-in or debugged

prior to the analysis of failure data. The failure data may

then be modeled by a statistical distribution which exhibits

a monotonically increasing failure rate.

2. The wearout failure period may be neglected by

truncating the analysis of failure data prior to the onset of

wearout. The failure data may then be modeled by a statist-

ical distribution which exhibits a monotonically decreasing
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failure rate.

3. Both early and wearout periods may be tLeglecteg!

by combining procedures 1 and 2 above. In this case the

failure rate is assumed to be constant and may be associated

with either increasing or decreasing monotonic failure rate

distributions.

This method of replacing a complex nonmonotonic

problem with a simpler monotonic sub-problem is the present

basis for the analysis of military electronic equipment com-

ponent failures. The obvious difficulty with this approach

is that it does not address the reality that many component

populations do, in fact, demonstrate all three failure

periods just as depicted in Figure 1.1. Consequently, by

making a simplifying assumption, part of the problem itself

has been assumed away. Data, so analyzed are not fully

productive arnd potentially useful information concerning

failure cause is unnecessarily lost.

It is proposed that a umified expression capable of

combining the entire failure rate curve would overcome the

difficulties of present failure rate models. It is further

hypothesized that such a model would provide more accurate

predictions and that additional information gleaned from

present raw failure data by the proposed model would be

useful in isolating the underlying causes of component

failure. The proposed model will, in all likelihood, be



more complex than are current models, but with the present

availability of high speed digital computers this is no

longer an important disadvantage.

The thesis is organized such that the early chapters

review fundamental reliability theory and provide a basis

for the latter applicatory chapters. Chapters 2 through 6

and parts of Chapters 7 and 8 have been extracted from a

previous report by the author (2). Portions of Chapters 4,

6 and 8 also appear in a paper, co-authored by Kececioglu,

published in the 1971 Transactions of the American Society i
for Quality Control (3).

!. .



CHAPTER 2

FUNCTIONS USED IN LIFE TESTING

2.1 Introduction

If, during a nonreplacement life test of N like

items, after a time t, N (t) items have survived, we esti-
S

mate the reliability of any one item at time t to be the

ratio of surviving items at time t to the total number of

items in test.

R(t) Ns t) (2.1)
N

Similarly, the unreliability is estimated as the ratio of

the cumulative number of items failing by time t to the

total number of items in test.

S~Nf(t)

Q(t) = N'f '-)(2.2)

Since

N - Nf(t) + N s(t) (2.3)

We may write

7
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R(t) + Q(t) = 1 (2.4)

These expressions are the fundamental definitions of reli-

ability theory. Next we shall examLine some basic functions.

2.2 Probability Density Function

In life testing, failure records are maintained on

the items in test. The fraction of the total items in test

which fail during time~t, between t and t +At, may be

plotted against time, to obtain a failure histogram. If

the time increment, At, is allowed to approach zero as a

limit as N becomes very large, the histogram approaches a

smooth curve, called the probability density function, f(t).

Probability density functions for three specific distribu-

tions are plotted versus time in Figs. 3.1c, 3.2c, and 3.3c.

Mathematically, f(t) is written

f 1 Nf(t1)N~)- - dt (2.5)-

The area under f(t) represents the cumulative failures per

component in test, which has previously been defined as the

probability of failure or unreliability, Q(t). If f(t) is

integrated over the limits -ow to +a , the cumulative

number of items failing will become equal to the total num-

ber of items in test and, therefore,



Of(t) d(t) = 1 (2.6)

By the definition of f(t),

f(t) > 0 (2.7)

for -w< t<66.

Equations (2.6) and (2.7) are the necessary and sufficient

conditions for a function to be considered a probability

density function (4, p. 10).

The area under the f(t) curve to the left of time t

represents the cumulative failures per component which have

occurred prior to t; therefore,

Q(t) - f()d (2.8)

where • is a dummy variable of integration. Since

R(t) - l-Q(t), equation (2.8) may be writteti

R(t) - 1 - f(j)dj (2.9)

-0

From equations (2.6) and (2.9) it follows that

R(t) - f(i)dj -5ft()dV (2.10)

which reduces to

R(t) f- fd (2.11)
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Since, by definition f(eo) = 0, we find by differentiation

that

f(t) - -d R t
"dt (2.12)

2.3 Instantaneous Failure Rate Function

It is useful in life testing to construct a failure

rate histogram similar to the failure histogram constructed

in Section 2.2, but with an all important difference. In

this case we plot the fraction of the number of items sur-

viving at t which fail duringAt. If the incremental time,

At, approaches zero as a limit as N becomes very large,

the histogram approaches a smooth curve called the instan-

taneous failure -rate function,;(t). Other names in common

usage for this function are hazard rate, force of mortality,

and failure rate. The failure rate versus time is plotted

for three specific distributions in Figs. 3.1a, 3.2a, and

3.3a. Mathematically, the failure rate is written

I d Nf(t)
N(t) Ns(t) dt (2.13)

Multiplying and dividing equation (2.13) by N gives

t N d[Nf(t)/NJ - N 214)

N S~t dt s~t)-a-I



it

or

,(t) -R�t) dt

From equallion (2.-12)

"- d= fR(t)
dt

therefore, A(t) - f (2.16)

2.4 Reliability Function

Equation (2.15) is an ordinary differential equa-

tion which can be solved for R(t). Rearranging (2.15)

1 drR(t - - •(t) dt

Integrating

tt

00

which yields
t

in R(") 10

If it is assumed that at t - 0 no items have failed, the

initial condition R(O) - 1 is obtained. Therefore,
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R(t) = e" - (d (2.17)

2.5 Mission Reliability Function

Mission reliability is defined as the probability

of survival of an item during a mission of duration T,

given that the item or component has not failed prior to

the start of the mission at time t.

Bazovsky (5, p. 44) defines the a posteriori prob-

ability of failure as

Q(t, T) = t• -7-t -Qt (2.18)

Mission reliability is the complement of Q(t, T),

R~tT) =1 -Q"t + T) - Q(t)
R(t( T) - 1 (2.19)

which may be written

(t, T) -R(t) - [I-R(t + T)3+ [I - R(LtR . .R(t)

or after simplifying

R (t + )
R(t, T) = R(t+T) (2.20)

2.6 Summary

It is evident that the functions derived in this

section are related to each other in such a way that if an
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expression is known for one function, the expression for the

other functions can be found directly.

Thus far, the discussion has not been based on any

particular distribution. The equations derived in this

section are always true regardless of the failure mechanism

or type of failure distribution involved. Chapter 3 will be

concerned with some of the more common distributions which

have been used to represent specific types of failure.
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2.7 Symbols Introduced in Chapter 2

f(t) Probability density function

.1 NaLu r:i11 log.-rI LhI u

N Total number of items in test

Nf(t) Cuuiulative number of items failing by time t

N (t) Number of items surviving at time T
U

Q(t) Unreliability function

R(t) Reliability function

R(t, T) Mission reliability function

T Mission duration

t Time variable

at Time increment

A(t) Instantaneous failure rate function

Dummy variable of integration



CHAPTER 3

DISTRIBUTIONS USED IN LIFE TESTING

3.1 The Exponential Distribution

The exponential distribution has proven to be a

representative model for the failure behavior of many

electrical components and also for electrical and non-

electrical complex systems (6, pp. 113-150). In re-

liability analysis the exponential distribution is commonly

used to evaluate life test data in which failures occur

randomly. The distribution is chara-terized by a constant

instantaneous failure rate (Fig. 3.1a).

A(t) = \= CONSTANT (3.1)

For the exponential distribution, the mean time between

failures is simply

T= (3.2)T=
A

The reliability function (Fig. 3.1b) is found from equation

(2.17),

R(t) = e 0 t + 00

15
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For constant

-At: (3.3)

R(t) = e 0 et 0

The probability density function (Fig. 3,1c) is found by the

use of equations (2.16) and (3.3) to be

-At
f(t) =Ae t Ž 0 (3.4)

A preliminary method of determining if failure data

follow the exponential distribution is to plot the median

rank, which is similar in concept to the cumulative percent

failing, versus time on logarithmic paper (Ref. 7, p. 2).

The median rank, M.R., In percent is defined as

Nf(t)-0.3 (100)

M.R. = N + 0.4 (3.5)

If the plotted points closely approximate a straight

line the date are assumed to be exponentially distributed.

However, since there is no measure of the accuracy of this

graphical method, a goodness-of-fit test such as the Chi-

Square or the Kolmogorov-Smirnov test should be used as veri-

fication. If the data do not fall on a straight line a

correction can be applied as described in Sec. 3.3 to

straighten the curve. If the T correction does not produce

the desired result, other probability papers should be tried.

3.2 The Normal Distribution



WlisLoricial ly, much or Lhe carly work wiLh Lhe nonuial

distribution concerned heights and weights of humans and ani-

mals, crop yields for different soils and ]ocalities, and

student examination scores (8, p. 8). Unlike an exponent-

ially distributed population which suffers its greatest

losses prior to the mean time T, the normally distributed

population suffers its greatest loss around the mean time T.

In life testing it has been observed that failures of the

wearout type are often normally distributed about a mean

wearout age.

The normal probability density function (Fig. 3.2c)

is I t.-2
"* -< t OD(3.6)

f(t) "• .... e

where T is the mean time to failure,

T= • (tI/N) (3.7)
1

and a is the standard deviation

") 1/2 1/2

h e N-1 f (g 2 is

The reliability function (Fig. 3.2b) is
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and the failure rate function (Fig. 3.2a) is

Am(t = e 0 (L2(3.10)

A preliminary method of determining if failure data

Sare normally distributed is to plot the Median Ranks (equa.-

tion. (3.5)) versus time on normal or arithmetic probability

paper. If the plotted points closely approximate a straight

line the data are assumed to be normally distributed. As in

the exponential case a goodness-of-fit test should be used

for verification. If the data do not fall on a straight

line other probability paper should be tried. King (8, p.9)

suggests that a concave downward plot on normal probability

paper usually suggests a left-skewed distribution and the

next step after such a result would be to use extreme value

probability paper. He further proposes that a concave up-

ward plot indicates a right skewed distribution and such a

result would indicate the use of log-normal probability

paper, although extreme value, chi-square, reciprocal, Wei-

bull and log-extreme value probability papers are also

possibilities.
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3.3 The Weibull Distribution

In 1951 Waloddi Weibul.l published a paper concern-

ing the breaking strength of materials and the size distri-

bution of fly ash (9). Because of the great flexibility of

the statistical distribution introduced in this paper the

Weibull distribution has been found to be quite useful in

other fields including reliability testing. The Weibull

probability density function (Fig. 3.3c) is

f(t) - ( e , t Ž (3.11a)

f(t) = 0 , t < (3.11b)

wLere,

0= Shape parameter o > 0

7= Scale parameter A > > 0

T= Location parameter .oa0 W< 00

The effect of varying the shape parameter is shown in Fig.

3.3 for al=0 a rad t 1/2, der 1s, andw t= 3. For less

than 1, the failure rate decreases with time and for

greater than 1, the failure rate increases with time. For

S= 1, the density function becomes that of the exponential

case with constant failure rate . For. - 3, the func-

tion approximates the shape of the normal distribution.

The Weibull reliability function (Fig. 3.3b) is
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t (tl---•(3.12)R(t) = e I

The fal~ure rate function (Fig. 3.3a) is

Other properties of the Weibull Distribution whith

are useful in life tctti.ng are:

The mean time to failure,

Y- it +r"(1 +i)) (3.14)

where ris the Gamma function.

The standard deviation,

Cr- 7 l(I( + 2) _r 2C' 1)11.2 (3.15)

The modal value of t, that is, the time at which the great-

est number of failures occur,

T M 1'+'1(i - 1 (3.16)

The median value of t, that is, the time at which half the

units in test will have failed,

T 4V+4(in 2)' (3.17)

Determining if failure data follow the Weibull

distribution is more complicated than the procedure for the

normal or exponential distributions. The first step is to

find the median rank (equation (3.5)).
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Lochner provides a convenient table for median

ranks which is good for fifty or fewer items in test (10).

Note that if N and Nf(t) are very large,

•N.R. s 100 Q(t) (3,18)

Once the median ranks are determined they are plotted ver-

sus the times to failure on Weibull Probability Paper. If

the plotted points approximate a straight line it is con-

eluded that the distribution is Weibull and the location

parameter I is equal to zero (Fig. 3.4a). It is far more j
likely, however, that the plotted points will approximate a

curved rather than a straight line on the first trial. If

this is the case, I is not equal to zero and it is necessary

tG plot the median ranks again; but this time versus t - tiV

where t1 is the time that the first failure was recorded.

Three possible cases may arise:

Case 1. Both sets of data curve up (Fig. 3.4b). This

indicates that -*< < O. Continue plotting the

median ranks against t " i until a value of li

is found which gives M.R. versus t -I as a

straight line.

r-.se 2. The first set of data curves down and the second

set (t - tI) curves up (Fig. 3.4c). This indicates

that 0 < -d<t . Continue plotting the median

ranks against t -t for positive values of



between 0 and tl, until a value of is found

which gives M.R. versus t - Vi as a straight line.

Ca.a 3. Both sets of data curve down (Fig. 3.4d). The

failure data being analysed do not follow the

Weibull distribution and other probability dis-

tributions should be considered.

If Case 1 or Case 2 prevails, the data fit the Weibull dis-

tribution and i is equal to the trial which produces the

best straight line approximation.

The shape parameter, • , is actually a measure of

the slope of the M.R. versus t - • line. Most Weibull

papers have an origin through which a line may be drawn

parallel to the M.R. versus t - f line. This parallel line

will intersect the 0 scale on the paper and the value of

caan be read directly. To find the value of the scale para-

meter,71 , first find the intersection of the M.R. versus

t - I line with the horizontal line at M.R. = 63.2%. From

this point of intersection drop a vertical line. Read the

value of t - V where the vertical line crosses the abcissa.

This value of t - I isj.

Since the graphical method gives no measure of

the accuracy of the fit of the distribution to the data,

it is prudent to verify the graphical procedure by the use

of a goodness-of-fit test.
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3.4 Test for Goodness-of-fit

Although there are several valid goodness-of-fit

tests available, only the Kolmogorov-Smirnov method will

be discussed here since it provides a valid measure of the

goodness-of-fit for any distribution and is simple to apply

( 11, p. 68).

The procedure is to compare the observed unreli-

ability,
N f(t i)

Qobsti' N

with the expected unreliability, Q exp(ti), as computed by

the distribution of interest. The absolute difference, D,

between these two cumulative values is noted for each

failure time t..
I

D= IQbs(ti) - Q (ti) (3.19)
obs exp 1

where i = I for the first failure, 2 for the second failure

and finally, i = N for the Nth failure.

The maximum value of Di is compared with values

from the Kolmogorov-Smirnov Table of significance levels
(Table 3.1). If the value of the maximum D. is less than

1

the value given by the Kolmogorov-Smirnov Table for the

sample size N and at a specified significance level, we can

accept the distribution in question at the specified level

of significance. If, .u the other hand, the maximum D. is



greater than the value in the table, the distribution is

reiected at the specified significlice lIevel.

ForI1" exaimple, Lt is desired Lo kW1ow i I Lhe .xpo\ii'1-

LiaL disLribution may be used at the .05 level, of signi-

ficance to represent the failure data of 10 items in life

test. The D.'s are calculated at the 10 times to failure.

The maximum absolute difference is found to be D3 = .45732,

Entering Table 3.1 with N of 10 and a significance level

of .05, the maximum allowable value of D at the .05 level

of significance is read as .410. Since D3 is higher than

the allowable value the exponential distribution is rejected

with a level of significance of .05. Had D3 been less than

.410 the exponential distribution would have been accepted

with a significance level of .05. Note that the values of I

maximum allowable D become more stringent with increasing

values of the level of significance. For most purposes and

for this paper a level of significance of .05 is considered

sufficient to accept a trial distribution.
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Table 3.1 D values for the Kolmogorov-Sminiov Goodness-of-
fit Test at Various Significance Levels and
Sample Sizes (11)

Sample Level of Significance

Size
(N) 0.20 0.15 0.1I0 0.05 0.01

1 0.900 0.925 0.950 0.97-) 0.995
2 0.684 0.720" 0.776 0.842 0.929
3 0.565 0.597 0.64? 0. 708 0.828
4 0.4094 0.525 0.564 0.624 0.73.3
C 0.446 0.474 0.510 0.565 0.669

6 0.410 0.436 0.470 0.521 0.618
,7 0.381 0.405 0.438 0.486 0.577
3 0.358 0.381 0.411 0.4-57 0.543
9 0.339 0.360 0.388 0.432 0.514

10 0..322 0.342 0.368 0.410 0.490

II 0.307 0.326 0.352 0.391 0.,46.
]2 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.31.4 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404

]6 0.2-58 10.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259, 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.35E

L25 0.21 0.22 0.24 0.27 0.32
30 0.19 0.20 0. 22 0. 24 0.29
35 0.18 0.19 0.21 0.23 0.27

Over 1.07 1.14 1.22 1.36 1.63
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3.5 Synbols Introduced in Chapter 3

D Absolute difference between expected and

observed unreliabilities

e Base of natural logarithms, e 2.71828....

i Subscript indicates 1,2,3,... in turn

j Subscript indicates 1,2,3,... in turn

M.R. Median Rank

Qexp(ti) Expected unreliability at time ti based on

a known distribution

Qobs(t.i) Observed value of unreliability at time t.

Median time (half of units in test have

failed)

T Modal time (greatest number of failures occur)

T Mean time (arithmetic average of failure

times)

F Gamma function

Weibull shape parameter

Weibull location parameter

Weibull scale parameter

Standard deviation

L



CHAPTER 4

THE FAILURE RATE CURVE

4.1 Introduction

In the early 1950's, after plotting failure rate

data over a period of years for various electrical and

complex mechanical devices, it became evident to researchers

that the failure rate curves of many of these unrelated

items had certain characteristics in comnon. It was ob-

served, for example, that in the early portion of component

life there was an initially high failure rate which de-

creased with increasing component age. During the long

middle portion of component life the failure rates were ob-

served to level off and become relatively constant. Fail-

ures during this period occurred at random intervals not

related to component age. Finally, an increasing failure

rate was noted as the components became worn. An idealized

failure rate curve of the type described above is shown in

* Fig. 4.1a. The shape of the curve has earned it the name,

"bathtub curve." The failure rate curve is of particular

31
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interest in this study because the three failure regions,

early, chance, and wearout are more distinct on this curve

than on either the R(t) or f(t) curves (Fig. 4.1b,c).

The necessity for separating the failure regions i.

apparent when it is considered that each failure mode fol-

lows a distinct statistical distribution, and, therefore,

requires individual mathematical treatment. A second reason

for separating the failure regions is that each failure

mode requires a different physical technique to improve re-

liability.

In the next three sections the principle mechanisms

accounting for early, chance, and wearout failures will be

considered.

4.2 Early Failures

A high incidence of early failures in a component

population is an iiLdication of poor quality control and

improper debugging and burn-in procedures. Substandard com-

ponents are initially weaker than the good components in a

mixed population and therefore they fail at mrich lower

levels of stress (Fig. 4.2a). As the higher failure rate,

substandard items fail and are removed from the population,

the population failure rate decreases (12, p. 4).

The Weibull distribution with P < 1 has been used

to represent the early failure period. Mendenhall and
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Hader have also shown that a combination of two exponential

distributions with different values of k for the early and

chance failure periods will give the characteristic de-

creasing failure rate of the early period (13).

4.3 Chance Failures

Chance failures occur randomly and are independent
of component age; that is, they occur during the entire

period that a component is in service and not just during

the chance period. In the early period, chance failures

occur together with early or substandard failures, and in

the wearout phase, chance failures occur with the wearout

failures. Diring the chance failure period it is assumed

thiat only chance failures occur. All the substandard items

have already failed and wearout has not yet begun. Chance

failures are caused by sudden, unpredictable stress accumu-

lations (Fig. 4.2b).

The exponential distribution is most frequently

used to model the theoretically constant flilure rate which

characterizes the chance period of component life. A more

flexible model is the Weibull distribution with 0 approxi-

mately equal to 1. This distribution does not requirp an

absolutely constant failure rate in order to have a good

fit to observed failure data.
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4.4 Wearout Failures

After the chance period of life, component deteri-

oration begins and failures become a function of age. As

the surviving components become older they also grow weaker

and more subject to failure at lower levels of stress.

Thus, deterioration produces the characteristic increasing

failure rate of the wearout period (Fig. 4.2c).

Both the normal distribution aid the Weibull -

tribution with 0 greater than I have been successfully ed

to model the increasing failure rate of the wearout pl 6od.

4.5 Summar,

In this chapter it has been shown that the indivi-

dual failure events cta be modeled by known statistical

distributions. It remains to be shown, however, that the

entire bathtub curve including early, chance, and wearout

failures can be modeled by a unified mathematical expression

derived from accepted reliability theory. The remaining

chapters are oted to fiuding auch an expression.



CHAPTER 5

THE BASIS FOR A UNIFIED EXPRESSION

5.1 Criteria for a Good Model

Curve fitting techniques could be used to fit a

•thematical expression to observed failure data, but

" tl#s would provide very little insight into the mechanics

of failure and would not be of great use in reliability im-

provement. A mathematical model based on the theory of

failure would, on the other hand, provide relevant informa-

tion about failure modes which would be quite useful in

analysing failure data and for improving product reliability.

For the purpose of this study a good model of the combined

failure rate curve is define.d as one which meets the follow-

ing criteriar

a. The unified model must combine the phenomena

of earily, chance, and wearout failures.

b. The number -%f restrictive assumptions nece-sary

to derive the model should be minimal.

c. The model should be mathematically simple if at

all possible.

37
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d. The model should correspond to observed failure

data at the .05 significance level for Liu,

Kolmogorov-Smirnov Goodness-of-fit Test.

e. The model should be useful for prediction and

for theoretical speculation.

f. The theoretical basis for the model must be

consistent with the manner in which the data

are generated.

5.2 The Product Rule

If it is assumed that there is a single population

of identical components and that the events of early failure,

chance failure, and wearout failure are independent, that

is to say, that the occurrence of one type of failure in

no way alters the probability of occurrence of the other

types of failure, then the unified unreliability would be

as shown in the Venn diagram (Fig. 5.1). For independent

events the joint probability of several events occurring

is simplyr the product of the individual probabilities. The

enclosed area of the Venn diagram is

Qecw(t) - Qe(t) + QC(t) + Qw(t) - Qe(t) QC(t)

- Qe(t) %(t) - QC(t) Qw(t) (5.1)

+ Qe(t) Qc(t) V(t)
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where

N ef(t)
Qe(t) = N(t

e

Qc(t)= N- f~
c NC

N f(t)Qw(t) "Nw'~ )

w

If each Q term is replaced by its complement, 1 - R, the

reliability product rule is obtained.

Recw(t) =Re(t) Rc(t) Rw(t) (5.2)

where

N (t)Re(t) - ~s

e
N (t)

R (t) =CBS(

c N

N c(t)
Rw(t) w's

Equation (5.2) is a potential model of the combined relia-

bility curve and it does meet certain of the specified

criteria set forth in Section 5.1. For example, the product

rule does combine the effects of the three failure phenam-

eta. There is only one limiting assumption: independent

failure events. And the product rule is a very simple

expression. The crucial question is whether or net the
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product rule corresponds to the observed failure data. To

answer this question, consider equation (5.2) with Lhli L1-

dividual reliabilities replaced by their respective defini-

tions

Res(t) x (t) x N (t) (53)
ecw N N Ne c w

At the end of the early period it is assumed that all early

failures have occurred, consequently, N es(tb) - 0. The

result of this is that for all t greater than tb, the com-

bined reliability given by equations (5.2) and (5.3) is

zero. This result is in direct conflict with physical

observations of mixed samples which indicate that the

reliability at t - tb is normally quite high. For this

reason the product rule which includes early failures as

independent failure events in a single population is reject-

ed as a possible model of the combined failure rate curve.

The possibility of using the product of reliabilities for

chance and wearout failures alone will be considered in

Section 5.4.

An interesting sidelight to the product rule is the

convenient but incorrect expression

Ae + c
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which has been used, on occasion, by reliability engineers

to represent the combined early and chance failure rate dur-

fiig early life. This simple expression might appear valid

after a casual inspection of the failure rate curve (Fig.

4.1a). However, it is derived by the combination of the

reasonable assumption that both early and chance failures

are of the exponential type with the incorrect assumption

that reliability in early life is represented by the pro-

duct of early and chance reliabilities. Mathematically,

Re (t) R e(t) Rct W

or

e e- e
e-

Taking the natural log '

which is ini..orrect since it was shown previously that

R (t) 0 R (t) R (t)
nc etC

and therefore,
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5.3 The Summation Rule

Consider a hypothetical non-replacement, life test

of N components. The components are placed iW test at

time t * 0 without prior burn-in or debugging. As each

component fails, the time to failure is recorded and the

test is terminated when the last component in test fails.

To assist in visualizing the problem, assume that the com-

ponents are of a type that can be examined after failure

and the mode of failure determined, be it early, chance,

or wearout. As items fail during the test they are removed

from the test population, inspected, and segregated into

three lots according to failure type. At the conclusion

of the test there will be three subpopulations oil N , N ,ec

and N failed items, respectively where N + N + N w Nw e c w

If the events of the tests are now reconstructed, it may be

theorized that at time t - 0 there were actually three

separate subpopulations in test each with an individual

failure density distribution, even though at time t - 0

no failures had yet occurred and therefore the subpopula-

tions were not physically distinguishable. It is not perti-

nent in making this assumption that the items actually be

inspected to determine N e, N , and Nw, as the subpopulations

would exist ever if these values were unknown or were

physically indeterminable. A graphical method for finding
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N e, Nc, and N from observed failure data is suggested ine w

Chapter 6.

If the preposition that there are three failure sub-

populations is accepted, a mathematical expression combining

the effects of the subpopulations may be found directly.

The cunmulative number of items failing in the mixed popula-

tion is found from the definition of unreliability

N ecw,f(t) - N Q ecw(t) (5.4)

Similarly, the number failing from each of the subpopula-

tions is

N ef(t) - N QG(t)

N ej(t) - Nc Qc(t) (5.5)

N wf (t) - N QW(t)

The total number of failures by time t in the mixed popu-

lation is simply the sum of the failures in the three sub-

populations.

Necw, f(t) - N (t) + Ncf(t) + N (t) (5.6)

• ef cwf

Substituting equations (5.4) and (5.5) into equation (5.6)

N Qew(t) - NeQe(t) + NcQc(t) + Nwqw(t) (5.7)
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or

N N N

Qecw(t) N e(t) + Qc(t) + %(t) (5.8)

This expression could also have been derived directly from

Bares' Theorem (14, p. 57), which, for this example, says

that the unreliability of a component drawn at random from

a mixed population composed of three failure subpopuilations

is the summation of three terms: the probability that the

component is from the early subpopulation times its unre-

liability if it is from the early subpopulation, plus the

probability that the component is from the chance subpopu-

lation, times its unreliability if it is from the chance

subpopulati~n, plus the probability that the component is

from the wearout subpopulation times its unreliability if

it is from the wearout subpopulation. This may be written

mathematically as

N N N
Qecw~ t) _ e Q e(t) + NE Qc(t) + Nw QW(t)

which is identical to equation (5.8).

If in equation (5.8) each of the unreliability terms

is replaced by its ccmplement, Q - 1 - R, a unified relia-

bility expression is obtained as follows:

N NwF t)] Nwt)

N N N N N N

ecw(t) e NN N c N N w
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.S lice

N +N +N -N
e C w

or

N N N

N N N

it follows that

N N N
1 R ew(t) -1 e Re(t) .--E R (t) - WN R(t)

This reduces to the unified reliability function

N N

e ~N

which is also called the reliability summation rule.

The other functions of interest are found by ap-

plying the equations of Chapter 2 to equation (5.9).

From eqtuation (2.12) it is known that

fecw(t) d - [R (t)3 (5.10)

For the summation model this becomes

N N N raR()

ecw Ný L t N~ dt c~ Ldt w

which reduces to

N N
fec-f =Ne(t) + - f-(t) + Nw f (t) (5.11)

"This equation is elso g'ven by K. L. Wong (4, p.19) as

representing the combined probability density function when

eary, chance, and wearout failures are present. Applying
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equation (2.11) to equation (5.9) it is shown that

f (t)

Recw(t) RCw (5.12)

or, N N Ne- f (t) + -R f (t) + -1 fw M
A ()e Nc NW,

?•ecw(t) N e N N
eRe(t) + R t) + NH Rw(t) (5.13)N eN c N w

The mission reliability for a mission of duration T start-

ing at time t with a surviving component is found by use of

equation (2.20)

R (tT) _ Recw(t + 1) (5.14)

ecw R ... (t)ecw

which expands to

N N NR e(t + T) + - R (t + T) + Jý Rw(t + T)
R ( t , T ) e. ....... ....

ecw N N N
e Re (t) + c R (t) +-ER (t)

(5.15)

A cursory check of the criteria for a good model given in

Section 5.1 shows that the sunmation ruxle does meet certain

of the specified criterim. Tha Phenomena of early, chance,

and wearout failures are combined. The single assumption

required for this model is that the mixed population be

composed of three individual failure subpopulations. The

model is mathematically simple and if the above assump-

tion is correct, this model would be useful for preliction
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and theoreti(.al speculation. The correspondence of the

model to observed failure data cannot be shown as simply

as the other criteria considered here ane, therefore,

this will be tonsidered in detail as a separate subject

in Chapters 7, 8, and 9. Conclusions concerning the

validity of the summation rule as a model for nomponent

relinbil 4 ty are hels: in abeyence until further examination

is provided.

5.4 Combined Product and Summation Rules

It was shown in Sectimn 5.2 that early failures

could not be combined with chance or wearout failures by

use of the produrct rule because the unified reliability

would go to zero at the end of the early life period. In

Section 5.3 it was shown that this problem did not occur

when the summation rule was used as the unified reliability

model. A third possible combination of reliabilities

exists and there is ample theoretical basis for its con-

sideration as will bp shown.

In Section 5.3 it was theorized that wearout fail-

ures and chance failures could be considered as separate

failure subpopulations. A re-examination of Fig. 4.2

would cast some doubt on this. Figure 4.2a clearly shows

two subpopulations, the substandard and the good. The

substandard subpopulation c,,.Z.ributes the early failures,
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whereas, the good subpopulation contributes both the chance

and the wearout failures (Fig. 4.2b,c). It was noted in

Section 4.3 that in the early pericd both early (substandard)

and chance failures occur. This means that in the early

period two subpopulations are in test and the summation

rule may be applied. In the chance and wearout periods,

however, only tCA, good subpopulation is in test, the sub-

standard items having already failed. Lie good subpopula-

tion provides both the chance and wearout failures. For a

good component to survive during the chance and wearout

periods it must survive both types of hazard, chance fail-

ure and wearout (deterioration) failures. 'his is a serial

arrangement of reliabilities to which the oroduct rule must

be applied.

The unified reliability of a component drawn at

random from a population containing good and substandard

components is found directly from Bayes' Theorem to be the

sum of two terms: the probability that the component is

substandard times its reliability if it is substandard,

plus the probability that the component is good times its

reliability if it is good (14, p. 57).

Mathematically,

N N +N
Rw(t) --Ae R(t) + c W R (t) R (t) (5.16)
Ocw N eN e
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where N + N is equal to the number of gcod components inC W

test, NG. The other functions of interest are found by

applying the general equations developed in Chapter 2 and

in Section 5.3 of this chapter to o'quation (5.16). From

equation (5.10)

f ecw(t) U - CRe-~ )

For the combined model this is

f (t) N + c [Rit) R (tiec N dt Re(tj N dt (W

which may be written

fecw(t) N - d Re(t + Nc N R(t) R (t)]
ec N a-t eN cdt wt

+d
+ R (t) R (~t)

Therefore, the rombined probability density function is

N N +N
f ew(t) = N ýt fe(t) + cN W rR c(t)f w(t) + R w(t)f

(5.17)

Fro-r equation (5.12)

; M ecw(t)
kecw R) cw(t)

which gives the combined failure rate
N N +N

(t) .fe M) + C-X-- ~ LR (t)f w(t) + R (t)f (t)]
kecw(t) N - N w N

N Re(t) + c Nw Rc(t) R(t) (5.18)
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The mission reliability for a mission of duration T start-

Ing et time t is found from equation (5.14) to be

N N +N
Se (t + T) + " R (t + T)R (t + T)

R (tT) N e N C w
ecw N + N

) N R(t) RW(t)

(5.19)

A check of the criteria for a good model given in Section

5.1 shows that the combined product and summation rule does

meet certain of the specified criteria. The phenomena of

early, chance, and weaiout failures are combined. The sin-

gle restricting assumption is that there are two failure

sub-populations, one exhibiting only early failures and the

other exhibiting both chance and wearout failures. The

model is mathematically simple and if the assumption above

is correct the model would be useful for prediction and

theoretical speculation. Of the three potential models

considered in this section, two still remain and require

further analysis.

5.5 Comparison of Different Models

Thus far in this chapter three potential unified

reliability models have been considered: the reliability

product model, the reliability summation model, and a

combined product and summation model. The product model

was eliminated because it went to zero at the end of the
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early period. Therefore it is prudent, before going to

Chapter 6, to compare the two remaining models at several

critical time periods during component life to insure

that the models are valid during the entire lifetime and

to, proviie a comparison of the two equations during the

different periods. The equations which will be compared

are equation (5.9), the reliability strnmation rule, and

ecuation (5.16), the combined product and summation rule.

At time t - 0 no components have failed, and,

therefore, Re = R c Rw = 1.

SUMMATION RULE (t = 0)

N N NRe (0) e(,) + __ (1) + _X (1)

or
N +N +N(0) e c w

ecw N

Since N + N + N = N,e c w

N
Recw(0) N 1 5.20)

COMBINED RULE (t = 0)

N N +NRec(O) =ae( 1 ) + c.._w W(i)

ecw N N

or,

Rw(0) N + N + N: e c_,,_.• -•,=1(5.21)
N N

Hence, both rules give the desired result for t 0 U.

Next consider the period 0 O, t S t w The individual
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reliabilities are R R (t), Rr = Rc(t), and R I since
e e - Rct) an w ic

wearout does not begin prior to t

wew
SUMMATION RULE (0 fa t ea t W)

N N N

Pecw~t) # jR(t) + N R c(t) + Nw (5.22)

COMBIINED RULE (0 e t I tw)

N N + N
RC(t) -- R (t) + c w R (t) (5.23)ee ) N e N RC5.3

Equations (5.22) and (5.23) vary by the amount,

--w [i - R C(t)j. In tests in which wearout is not con-

sidered, N = 0 and both equations (5.22) and (5.23)

reduce to

N N
R (t) =e R (t) + S R (t) (5.24)

Equation (5.24) is given by Dietrich (15, p. 15), Wong

(4, p. 19), Polovko (1i, p. 94), and Mendenhall and Hader

(13, p. 505).

In the time period tb S t(O0 the individual reli-

abilities are Re = O Rc = Rc(t), and R = R (t).w w

SUMMATION RULE (tb t too)

N N
Re w(t) R(t) + R R(t) (5.25)
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COMBINED RULE (Lb i "so)

N +N
R e-w) N R (t) R (t) (5.26)
ecw N C w

Although equations (5.25) and (5.26) are dissimilar, forms

of both have been referenced in the literature for the time

period after burn-in. Equation (5.25) is given by Polovko

(16, p, 95) and by Wong '4, p. 19). Equation (5.26) is
N 4.N

given when N e 0 and therefore c w N 1 by Bazovskye cNw-1byaovy

(5, p. 52) and by Pieruschka (17, p. 73),

The two models have now been considered and com-

pared for three critical periods of time during component

life and neither has been eliminated. To be of use, how-

ever, the parameters of the models must be obtainable. In

Chapter 6 a method will be given for obtaining the para-

meters of the summation rule. The combined model offers

a different problem ia parameter determination and although

considerable effort was expended to find an ai.alytical

method for the determination of R (t) and R (t), no satis-

factory taethod was developed. The only practical technique

found for applying equati n (5.16) without prior knowledge

of Rc (t) and Rw(t) to eliminate one of the parameters

by combining t- quantity R (t) * R w(t) into a single term

R G(t). Th :esult of this combination is to reduce the
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combined summatioti-product model to an ordinary stunmnition

model wl':h two subpopulations

N eRN G
R ecw(t) = K Re't) +- RG(t) (5.27)

where N + NG = N. An eypressiot, of this form is usede

by Kao (18, p. 397) to describe electron tube failures.

If the life test is truncated before wearout. equation

(5.27) is equivalent to equation (5.24). Onie method of

parameter determination for equation (5.27) is given by

Kao (18) and another is given in Chapter 6 of this report.

The final choice as to which model to use, equation (5.9)

or equation (5.27), must be based on the data itself. A

graphical aid to assist in determining the number of under-

lying subpopulations is suggested in Chapter 6. In cases

in which both equation (5.9) and equation (5.27) appear to

apply, equation (5.9) is preferred because with its addi-

tional parameters it is the more powerful expression.
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5.6 Symbols Introduced in Chapter 5

f e(t) Early probability density function

f (tW Chance probability density functionC

f w(t) Wearout probability density function

f W(t Unified probability density function
ecw

N Total items in test, N - N + N + Ne c w

N Total items failing in early mode (substandard)

N Total items faillng in chance modec

N Total items failing in wearout mode
w

NG Total goodc items in test, NG M 1 - Ne - N + Nw

N f(t) Items failing in early mode by time t

N cf(t) Items failing in chance mode by time t

N Wf(t) Items failing in wearout mode by time t

Necw,f(t) Items failing in all modes combined by time t

N e,s(t) Items in early subpopulation surviving by

time t

N C(t) Items in chance subpopulation surviving by

time t

N (t) Items in wearout subpopulation surviving by

time t

Qe(t) Early unreliability N f(t)/Ne

QC(t) Chance unreliability N (t)/Nctf c

Qw(t) Wearout unreliability Nf(t)/N

Qecw(t) Unified unreliability function
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R e(t) Early (substandard) reliability Ne, (t)/Ne

R c(t) Chance reliability Ncs (t)/Nc
Rw(t) Wearout reliobtlity N s(t)/Nw

RG(t) Reliability of all good components regard-

less of failure mechanism

R ecw(t) Unified reliability functiot'

tb Time at end of the early period
t Time at beginning of wearout period

•ko(t) Unified failure rate function



CHAPTER 6

TECHNIQUE FOR APPLYING THE RELIABILITY SUMMATION MODEL

6.1 Introduction

If the early, chance, and %earout failure periods

are each modeled by an individual Weibull Distribution,

equation (5.9) may be written as

N N(e)) N

RecwN(t) e + N- + N" e

(6.1)

where the subscripts e~c, and w indicate individual Weibull

parameters for the eerly, chance, and wearout subpopula-

tions, respectively. In order to use equation (6.1) to

compute component reliability it is necessary to find the

three subpopulation sizes Ne, Nc, and Nw and the nine

Weibull parameters, te, $e, '7 , 1c, •, ' 'w' Pw' 7nde?( .

The subpopulation sizes may be determined by

arnalylical means or by physical failure analysis, but the

analytical method is preferred for several reasons:

1. Analytical methods are usually less expensive

58
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and are less Uime consuming than physical

inspection.

2. The comr:nents may not lenu themselves to

physical insp3ction without sophisticated and

expensive test equipment, and the expenditure

of much time.

3. The failure data may be old ard the components

no longer available for inspection.

4. The components may be destroyed upon failure,

thus making it impossible to conduct a failure

anelysis.

5. The components may be in remote or otherwise

inaccts, )le equipment.

Kao (18) suggests a graphical method for separating

the subpopulations and fiading five Weibull parameters for

e mixel population consisting of two subpopulations. For

the purpose of this report an attempt was made to qxtend

Kao's original method so that it would apply to the case of

three subpopulations, but the effort was abandoned for

reasons which are fully discussed in Appendix A.

A graphical method for subpopulation separation is

recoummended in Section 6.2 and illustrative examples are

given in Chapters 7, 8, and 9.
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6.2 Parameter Determination

fhe following steps provide a method for separa-

ting a mixed Weibuli population into Its constituent sub-

populations and then of finding the parameters 1,7t, and

f..r each of the subpopulations. The steps are:

1. Compute median ranks for the mixed failure

data and plot median ranks versus time on Weibull proba-

bility paper.

2. By visual inspection fit straight lines to the

plotted data points. For the case of early, chance, and

wearout subpopulations there will be three relatively

straight line segments on the Weibull plot of the mixed

failure data. Points falling closest to tha lower line

are in the early subpopulation, points falling closest to

the middle line are in the chance subpopulation, and

points falling closest to the upper line are in the wear-

out subpopulation.

3. N is calculated as the cumulative number ofe

failures represented by the points along the early (lower)

line, N is calcuiated as the cumulative number of fail-c

ures represented by the points aling the chance (middle)

lirt. N is calculated as the cumulative number of fail-W

ures represented by the points along the wearout (upper)

line.
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4. Compute new median ranks for each subpopulation

based on sample sizes Ne, N and N , respectively.c w

5. Replot each subpopulation on individual Weibull

pLper and determine 6,17, and 0 for each subpopulation by

the method described in Section 3.3.

Using the above grapi-ical procedures, all of the

unknown quantities in equation (6.1) may be estimated. The

method described in this chapter will be applied to raw

data in the next three chapters. Human mortelity is con-

sidered for illustrative purposes in Chapter 7 while

Chapters 8 and 9 deal with Klystron -1nd Magnetron fail-ures

respectively.



CHAPTER 7

APPLICATION OF THE RELIABILITY SUMMKATION MODEL

TO HUMAN MORTALITY

7.1 The Data to be Analysed

If mortality is plotted versus time for a large

sample of humans, the resulting curve provides a classic

example of a mixed population exhibiting infantile, chance,

and deterioration failures or, in this case, deaths.

Experience has shown that the observed failure data of some

electrical and complex mechanical systems is similar to that

of human mortality. For this reason and because the data

are familiar, human mortality has been selected as the sub-

ject for this first application of the reliability summation

model. A sample population of 1000 Americans has been as-

sumed and the mortality data for this population are given

in Table 7.1. The s&'ple data are based upon survival

probabilities given by Reference 19. The data of Table 7.1

are grouped into twenty, 5-year class intervals and the

mortality and force of mortality histograms are plctted in

Figs. 7.1 and 7.2
63
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Table 7.1 Mortality Table for 1000 Americans

Age Probability Number Proba- Proba- Force
At Class of Survival Dying bility bility of
Interval at Beginning During Density of Death Mortal-
End of 5-Year 5-Year Function at End ity
Point Period Period of 5-Year f ew(t)

Period R (cw~t)

t R (t) Deaths f (t) Q (t) A (t)

ecw ecw ecw ecw

5 1.000 13 .013 .013 .013

10 .987 6 .006 .019 .006

15 .981 6 .006 .025 .006

20 .975 8 .008 .033 .008

25 .967 9 .009 .042 .009

30 .958 10 .010 .052 .012

35 .948 11 .011 .063 .012

40 .937 13 .013 .076 .014

45 .924 19 .019 .095 .021

50 .905 29 .029 .124 .032

55 .876 43 .043 .167 .049

60 .833 63 .063 .230 .076

65 .770 90 .090 .320 .117

70 .680 121 .121 .441 .178

75 .559 146 .146 .587 .261

80 .413 150 .150 .737 .363

85 .283 132 .132 .869 .466

90 .131 84 .084 .953 .640

95 .047 37 .037 .990 .789

100 .010 10 .010 1.000 1.000
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7.2 Parameter Determination

The example data are prepared for plotting by com-

puting the median rank for each class interval. In Lhis

case the sample was so large that the median ranks were

considered equal to the cumulative percent failing. The

median ranks and class interval end points are tabulated in

Table 7.2 and the data are plotted on Weibull probability

paper in Fig. 7.3. The median zanks hwve been plotted at

the class interval end points rather than at the mid-points

as suggested by some authors, because the failure data are

actually accumulated up to the class interval end point and

therefore this would seem to be the more logical location

for the median ranks. Three straight lines are fitted

amongst the points plotted in Fig. 7.3, and it is determined

by visual inspection that points I and 2 fall along the

line representing the early subpopulation. Points 4 through

9 are identified with the chance subpopulation and points 11

through 20 are placed in the wearout subpopulation. Points

3 and 10 each fall close to two lines and the final deter-

mination as to which subpopulation the questionable points

should be identified with is not made until after the points

have been included in both possible su'populations and the

subpopulations replotted on Weibull paper. This was done

and the best straight line approximation occurred when
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Table 7.2 Mortality Data Prepared for Plotting

Point Number Age Median Rank

1 5 1.3

2 10 1.9

3 15 2,5

4 20 3.3

S25 4.2

6 30 5.2

7 35 6.3

8 40 7.6

9 45 9.5

10 50 12.4

11 55 16.7

12 60 23.0

13 65 32.0

14 70 44.1

15 75 58.7

16 80 73.7

17 85 86.9

18 90 95.3

19 95 99.0

20 100 100.0
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point 3 was included in the chance subpopulation and when

point 10 was placed in the wearout subpopulation. All of

the points have now been identified with a particular sub-

population. The subpopulation sizes are determined by the

total failures represented by the points which fall in the

particular subpopulation. Thus

N = 19e

N - 76
C

N - 905w

New median ranks are calculated for subpopulation replot-

ting by considering each of the subpopulations as an indi-

vidual population. The new median ranks are tabulated in

Table 7.3 and the subpopulations are replotted individually

in Figs. 7.4, 7.5, and 7.6. Frrm these replots, the follow-

ing Weibull parameters are determined:

Figure 7.4 Ve = 0

-e -1.60

"= 4.85

Figure 7.5 -0

M 2.91

fc " 35.9
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Table 7,3 Mortality Data Prepared for Subpopulation Replot

Point Subpopu- Median
Number Age lation Rank

Nf(t)

Early
Subpopulation 1 5 13 65.5
"Ne =19) 2 10 19 96.4

Chance 3 15 6 7.46
Subpopulation 4 20 14 17.95

76)
5 25 23 29.7

30 33 42.7

7 35 44 57.3

8 40 57 74.2

9 45 76 99.2

Wearout 10 50 29 3.17
Subpopulation 11 55 72 7.92(N =905) 12 60 135 14.89

13 65 225 24.8

14 70 346 38.2

15 75 492 54-.3

16 80 642 71.0

17 85 774 85.5

18 90 858 94.7

19 95 895 98.7

20 100 905 99.9
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£'igure 7.6 = 0

= 7.20

7 - 77.5

All parameters necessary to use equaLion (6.1) have been

determined and the equation may now be used to find reli-

ability, or in this case the probability of living, for

all positive values of t. For example, consider t = 30

years. Equation (6.1) is

t-, e t-t-1 OW

Ne c N

ecwIt) N •+-e N

Substitu-ing numerical values for each of the parametcrs

gives 1.6 7.81 30-072

19 76 ( 1 76 + 05
Recw i-0- + T0-- e + 1000 e

= .019(.962 10- 8) + .076(.547) + .905(.999)

= .946

If this sample of 1000 is representative and if

,pqation (6.1) is valid, a human, randomly selected at

birth, can be expected to have a 94.6% chance of surviving

to age 30. Conversely, the expected probability of dying

before age 30 would be
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Qecw (30) = - R ecw(30) - I - .946

qecw( 3 0 ) = .054

7.3 Goodness-of-Fit
For the purpose of comparison the observed value of Q ecw(30)

from the sample of 1000 is found to be .052. The value of

the absolute difference between the expected Qecw (30) and

the observed Q (30) is
ecw

D =3.054 - .052 = .002

From the Kolmogorov-Smirnov Table (Table 3.1) for N greater

than 35, the asymptotic equations are used to find the max-

imum allowable value of D at the .05 significance level

1.36 1.36
D =]3 =- 1-6-.043

N 1000

To fully test the proposed model for goodness-of-fit, it is

necessary to find D. at each class interval to insure that

no value of D. is greater than .043. This has been done and
1

the values of Q Expected, Q observed, and D. are tabu-
ecw ecw1

lated for each class interval in Table ?.4. The maximum D.
1

is found to be .007. Since .007 is less than the allowable

maximum difference of .043 it is concluded that the summa-

tion model for three subpopulations does meet the criteria

established in Section 5.1 for a good model. The expected

and the observed cumulative failure distributions are
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Table 7.4 Absolute Difference Between Expected aad
Observed Cumulative Mortality Data (Summation
Model)

Age Observed Expected Absolute
Difference

t Qecw(t) Qecw(t) D

5 .003 .013 .000

10 .019 .020 .001

15 .025 .025 .000

20 .033 .032 .001

25 .042 .042 .000

30 .052 .054 .002

35 .063 .068 .005

40 .076 .083 .007*

45 .095 .010 .005

50 J124 .127 .003

55 .167 .166 .001

60 .230 .226 .004

65 .320 .317 .003

70 .441 .440 .001

75 .587 ,589 .002

80 .737 .742 .005

85 .869 .871 .002

90 .953 .952 .001

95 .990 .988 .002

100 1.000 .998 .002

* Maximum absolute difference

Allowable absolute difference at the .05 significance

level is found from Table 3.1 to be

1.36 = 1.36 = .043

rN 0=0
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plotted for visual comparison in Fig. 7.7. The excellent

correlation between the observed and the expected data

clearly indicates that the reliability summation model is

capable of accurately representing the reliability of mixed

populations.

7.4 Analysis of Underlying Failure Causes-Early Failures

In Chapter 4 it was shown that the characteristic

decreasing failure rate of the early failure period may be

produced by a combination of subpopulations, none of which

individually exhibits a decreasing failure rate. An inter-

esting example of the phenomenon is provided by the 1958

Commissioner's Standard Ordinary Mortality Table (19). In

this case each of the three subpopulations to be combined

exhibits a monotonic increasing failure rate (force of

mortality) as indicated by the subpopulation shape para-

meters each being greater than unity. Yet, when these sub-

populations are combined into a heterogeneous population

the combined failure rate is initially decreasing. This

phenomenon may be explained by cnnsidering the interaction

of the three subpopulations. Table 7.3 indicates that the

early subpopulation is composed of only 19 of the 1000

individuals being considered. Because the early subpop-

ulation exhibits a very high failure rate in contrast to

the useful and wearout subpopulations it causes an initi-

ally high overall failure rate for the heterogeneous
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population. During the first 5 years after birth 13 of Lhi,

19 members of the early subpopulation die and, therefore,

the future impact of this subpopulation on the overall fail-

ure rate is diminished. After ten years all 19 members of

the early subpopulation have died and the failure rate of

the heterogeneous population has decreased to its lowest

point, thus ending the early failure period.

A mathematical explanation of the decreasing failure

rate phenomenon during the early portior of hunan life is

provided by the failure rate model, equation (5.13). The

subpopulation values for probability density function and

reliability have been determined from individual Weibull

models for each subpopulation.

(t ef0(t)+ N ft(t) + fjt)

M it " + N \5.13)Secw NeR W(() Nv (t)
Re + c-R.-t + iiN

At t - 5 years the failure rate equation after multiplying

and dividing by 1000 yields

k ecw(5) .19 (.650) + 76 (.004) + 905(0)

19 (.350) + 76 (.996) + 905(1)

The first term in the nmerator and denominator represents

that portion of the heterogeneous failure rate caused by

the early subpopulation. The arithmetic is done in detail

below to demonstrate this effect at age five.
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; 12.3 + .3 + 0 - .013
•ecw"5" =6.7 + 75.6 + 905

Note that 97 per cent of the cont:ibution to failure rate

is produced by the early subpopulation at age 5 years.

At age 10

ecw (10) . 19(.309) + 76(.023) + 905(0)
19(.041) + 76(.973) + 905(1)

This reduces to

Aacw(lO) = 5.86 + 1.75 + 0

.8 + 74 +905 008

The contribution to failure rate by the early subpopulation

is now only 77 per cent and .-he failure rate has decreased

from its previous value. Consider age t - 15.

-ecw(15) - 19(.039) + 76(.056) + 905 (0)

19(.002) + 76(A917) + 905 (1)

This reduces to

• )•ew'5"= 741 + 4.26 + 0
(15) - 4 .005

.038 + 69.7 +905

The contribution of the early subpopulation is now only 15

per cent and the trend in failure rate is no longer decreas-

ing thus indicating that the early failure period has ended.

Useful Life Failures

Examination of Figure 7.2 reveals that the chance
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or useful life failure period starts at 10 years of age and

extends to approximately 50 years at which time wearouL

becomes the dominant mode of failure. The slight increase

in failure rate prior to 50 years is attributed to the

interaction betwern wearout and chance failure mechanisms.

An accident which causes the death of an older person might

only cause injury to a younger individt:sl. Thus, even

though the mechanism of failure or death is essentially of

the chance variety the force of mortality is not strictly

independent of age as it is 'n the ideal case.

i4earout

The delineation between the thance and wearout

periods i. not as distinct in Figure 7.2 as it is in the

theoretical curve of Figure& 1.1, because in the prevent

illustration both periods exhibit an increasing failu.-e

rate. However when the cumulati-e failures are plotted

on Weibull probability paper, as in Figure 7.3, the delinea-

tion between the chance and wearout periods is clearly

shown to occur at 50 years of age. human mortality, of

course, is quite dissimilar from the failure of mechanical

or electrical components. This example has served the pur-

pose of placing failure phenomena and the reliability

smmnation model on a more familiar plane. It is time ncw

to apply the model to actual iailltary equipment ccuponent

failure data.



CHAPTER 8

APPLICATION OF THE RELIABILITY SUMMATION MODEL

TO KLYSTRON FAILURES

8.1 The Data to be Analysed

In a paper titled, "High-Power High-Frequency

Reliability Techniques," Doyon and Siegman (20) have pre-

sented some klystron failure data exhibiting early, chance,

and wearout failures. Their data for 92 klystrons tested

to failure are the basis for this second example. Table

8.1 is a tabulation of pertinent failure data for the 92

klystrons in test. The data have been grouped into twenty-

seven 600 hour class inter-vals.

8.2 Parameter Determination

The class Interval end points together with their

respective median ranks are tabulated in Table 8.2 and

plotted on Weibull probability paper in Fig. 8.1. Three

straight lines are drawn amongst the points and by in-

spection it is determined that points 1 thirough 4 are in

the early subpopulation, points 5 through 11 are in the

83
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Table 8.1 Raw Failure Data for 92 Klystrons

rime Relia- Failures Proba- Unre- Failure
at Class bility at During biiity liabil- Rate
Interval Beginning Class Density ity at
End of Class Interval Function End of
Point Interval Class

Interval

t Rew(t) Failures fecw(t) Qecw(t) Aecw(t)

600 1.000 23 .2500 .250 .2500
1200 750 9 .0980 .348 .1305
1800 .652 2 .0218 .370 .0334
2400 .630 3 .0326 .402 .0517
3000 .598 11 .1200 .521 .2010

3600 .479 6 .0650 .587 .1360
4200 .413 3 .0326 .619 .0790
4800 .381 6 .0650 .684 .1705
5400 .31.6 4 .0453 .728 .1375
6000 .272 3 .0326 .761 .1200

6600 .239 4 .0435 .804 .1820
7200 .196 8 .0870 .891 .4440
7800 .109 3 .0326 .924 .2990
84n0 .076 0 .0000 .924 .0000
9000 .076 1 .0109 .935 .1436

9600 .065 2 .0218 .956 .3359
10200 .044 2 .0218 .980 .4960
10800 .020 0 .0000 .980 .0000
11400 .020 0 .0000 .980 .0000
1.2000 .020 0 .0000 .980 .0000

12600 .020 0 .0000 .980 .0000
13200 .020 0 .0000 .980 .0000
13800 .020 0 .0000 .980 .0000
14400 .020 1 .0109 ý990 .5450
15000 .010 0 .0000 .990 .0000

15600 .010 0 .0000 .990 .0000
16200 .010 1 .0109 1.000 1.0900
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Table 8.2 Klystron Failure Data Prepared for Plotting

Point Median
Number Age Rank

1 600 24.6

2 1200 34.4

3 1800 36.5

4 2400 39. 7

5 2000 51.7

6 3600 58.2

7 4200 61.4

8 4800 68.0

9 5400 72.3

10 6000 75.5

11 6600 79.8

12 7200 88.5

13 7800 91.7

8400

14 9000 92.9

15 9600 95.0

16 10200 97.2

10800

11400

12000

12600

13200

13800

17 14400 98.4

15000

15600

18 16200 99.4
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chance subpopulation, and points 12 through 18 are in the

wearout subpopulation. No importance is attached to the

fact that the three lines in this case intersect at a com-

mon point, as the only purpose of the mixed population

plot is to identify and separate the three subpopulations.

By totaling the failures represented by each of the points

falling in a particular subpopulation, the subpopulation

sizes are found to be

N - 37e

N - 37c

N - 18
w

New median ranks are calculated based on these subpopulation

sizes and these data are tabulated in Table 8.3. The sub-

populations are individually replotted in Figs. 8.2, 8.3,

and 8.4 and the following Weibull parameters are determined:

Figure 8.2 Ve " 0

S= .92

We = 650

Figure 8.3 -- 0

- 2.65

71 4390
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Figure 8,4 0w "

Pw - 3.Ou

ww- 89rl)

All parameters necessary to use equation (6.1) have been

found. The equation can now be used to determine the ex-

pected reliability, at a given time, of a klystron randomly

drawn from a mixed population which is represented by the

tested sample. For example, consider t = 4800 hours.

Equation (6.1) is J9
t-r e t-W

N N "(--c NRecw~t)'=•+• N•e (-)

Substituting numerical values for all parameters

R7 (0 2 e4800-0 .92 48000 2 65R~~~ ~~ (4800) 2e 60+Le -(--0 26

_4800-0 3.00
+18 "e 8900"
92e

= .402(.00185) + .402(.282) + .196(.855) .282

If the sample of 92 is representative and if equation (6.1)

is valid, a klystron randomly drawn at time t = 0 can be

expected to have a 28.2% chanze of surviving 4800 hours of

operation. Conversely, the expected probability of failing

before 4800 hours of operation is

Qeecw(48 0 0) - 1 - Recw( 4 800) = 1 - .282 =.718



Table 8.3 Klystron Failure Data Prepared for Subpopula-
tion Replot I

Point Subpopu- Median
Number Age lation Rank

Nf(t)

Early 1 600 23 60.7
Subpopulation 2 1200 32 84.7
(N e 37)

3 1800 34 90.1

4 2400 37 98.1

Chance 5 3000 11 28.6
Subpopulation 6 3600 17 44.6(Nc 37)

7 4200 20 52.6

8 4800 26 68.8

9 5400 30 79.4

13 6000 33 87.5

11 6600 37 98.1

Wearout 12 7200 8 41.8
Subpopulation 13 7800 11 58.1
(N = 18)( 14 9000 12 63.6

15 9600 14 74.5

16 10200 16 85.4

17 14400 17 90.9

18 16200 18 96.3
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I { (,o0 IiIC 8-of-I"1jL

For the purpose of comparison, the observed value

of Q (4800) from the tested sample of 92 klystrons isecw

.684 (Table 8.1). The absolute difference between the ob-

served and the expected values is

D4 8 0 0 = .718 - .684 = .034

From the Kolmogorov-Smirnov Table (Table 3.1) for N greater

than 35, the asymptotic equations are used to find the max-

imum allowable value of D at the .05 significance level.

D = --1.36 = 1. = .1415

To fully test the proposed model for goodness-of-fit, it

is necessary to find Di at each class interval to insure

that no value of Di is greater than .1415. This has been

done and the values of Qecw expected, Qecw observed, and

Di are tabulated for each class interval in Table 8.4. The

maximum Di is found to be .063. Since .063 is less than the

allowable maximum difference of .1415 it is concluded that

the summation model for three failure subpopulations

does meet the criteria established in Section 5.1 for a good

model. The expected and the observed cumulative fail-

ure distributions are plotted for visual comparison
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Table 8.4 Absolute Difference Between Expected and
Observed Crmlative Klystron Failures
(Summation Model)

Observed Expected Absolute
Difference

t Qecw(t) Qecwt) D
ecw ec

600 .250 .245 .005
1200 .348 .346 .002
1800 .370 .408 .038
2400 .402 .465 .063*
3000 .521 .525 .004

3600 .587 .591 .004
4200 .619 .657 .038
4800 .684 .718 .034
5400 .728 .772 .044

:6000 .761 .815 .054

6600 .804 .848 .044
7200 .891 .875 .016
7800 .924 .896 .028
8400 .924 .914 .010
9000 .935 .930 .005

9600 .956 .944 .012
10200 .980 .956 .024
10800 .980 .967 .013
11400 .980 .976 .004
12000 .980 .983 .003

12600 .980 .989 .009
13200 .980 .992 .012
13800 .980 .995 .015
14400 .990 .997 .007
15000 .990 .998 .008

15600 .990 .999 .009
16200 1.000 1.000 0.000

*Maximum absolute difference

Allowable absolute difference at the .05 significance level
is found from Table 3.1 to be

1.36 1.36
---- F92-- .11



95

in Fig. 8.5. In this example there is a good correlation

between the observed anc the expected data and it may )be

concluded, as it was in Chapter 7, that the reliability

sunmmation model with parameters determined by the graphical

method given in Chapter 6, accurately models the reliability

of mixeu failure mode populations.

8.4 Analysis of Underlying Failure Causes-Early Failures

In Fig. 8.1 the four points which fall in the early

subpopulation represent 37 klystron failures or 40 per cent

of the heterogeneous klystron popuiation. This large early

subpopulation indicates that there are a large number of

substandard items in the mixed population. Unfortunately

the exact number of substandard klystrons cannot be deter-

mined mathematically because the early subpopulation is

composed of chance as well as substandard failures. The

effect of this combination is to produce a decreasing

failure rate until 2400 hours of operation. See Fig. 8.6.

After 2400 hours the klystron population is completely

burned in.

Useful Life Failures

IT Fig. 8.6 the useful life period which extends

from 2400 hours to 7200 hours is seen to be nonmono'

tonic as a result of the interaction of the three sub-
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populations which each have an impact on failure rate

during the period, An additional 49% of the klystron

population fails during the useful life period leaving

only 18 klystrons to fail in wearout.

Wearout Failures

Although wearout begins after 7200 hours of opera-

tion, the wearout failure rate does not exceed the maxitmin

useful life failure rate until after 9000 hours of opera-

tion. From Fig. 8.6 it is seen that 20 per cent of klys-

trons with greater than 9600 hours may be expected to fail

within the next 600 hours.

Conclusion of Analysis

1. The large size of the early subpopulation sug-

gests that improved quality control measures are in order

for future klystron production of the type analysed.

2. Because of the high failure rate exhibited

during useful life, a burn-in period of only 600 hours

during early life would be sufficient to reduce population

failure rate to that of the useful life period. During

the 600 hour burn-in approximately 20% of the klystrons

may be expected to fail as compared to 40% failures if the

burn-i- test is run for the 2400 hour duration of early

life.

3. Operational reliability of klystrons could be
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maintained at specified levels by controlling the number of

hours the klystrons are permitted to operate, For example,

it might be specified that all klystrons in operation must

have an 80 per cent chance of survival during any 600 hour

interval. In this case a 600 hour bur*-in prior to oper-

ational employment of the klystrons should reduce the

population failure rate below 20 per cent at an estimated

cost of 20 per cent of the total klystron population.

Next, klystrons surviving 8400 hours of use could be removed

from operation prior to failure at a cost of an additional

8 per cent of the klystrons. The result is that by selec-

tively discarding 28 per cent of the klystron population

the remaining klystrons would have an 80 per cent chance

of surviving during any 600 hour mission.



CHAPTER 9

APPLICATION OF THE RELIABILITY SUMMATION MODEL

TO MAGNETRON FAILURES

9.1 The Data to be Analysed

Table 9.1 contains failure information for a pop-

ulation of 38 magnetrons during operational use. The in-

formation was provided by the U.S. Army Missile Command

located at Redstone Arsenal, Alabama. The accuracy and

the analytical power of the proposed model will be exam-

ined in this chapter. In Chapter 10 the results obtained

in this chapter will be compared with those obtained using

present reliability modeling techniques.

9.2 Parameter Determination

The median rank and age at failure for each failed

magnetron is tabulated in Table 9.2 and plotted on Weibull

probability paper in Figure 9.1. Three straight lines are

drawn amongst the points and by inspection it is determined

that points 1 through 10 are in the early subpopulation,

points 11 through 35 are in the chance or useful life

100
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Table 9.1 Raw Failure Data (38 Magnetrons)

Time at Cumulative Cumulative %
failure Failing at Failing at

Time - t Time = t

t Failures Q (t)
ecw

0.0 1 .026

1.0 2 .053
1.5 3 .079
1.7 4 .105
8.3 5 .132

10.0 6 .158
15.0 7 .184
15.5 8 .210
28.0 9 .237
36.7 10 .263

73.6 11 .290
95.0 12 .316

116.0 13 .342
120.0 14 .368
130.0 15 .395

153.5 16 .421
165.0 17 .447
226.4 18 .474
332.3 19 .500
363.0 20 .526

405.4 21 .551
409.0 22 .579
431.0 23 .605
439.0 24 .631
525.0 25 .658

541.7 26 .684
577.9 27 .710
677.0 28 .736
739.0 29 .763
873.0 30 .790

937.0 31 .798
1144.0 32 .844
1169.0 33 .849
1297.0 34 .868
1630.0 35 .898

2088.9 36 .924
2340.9 37 .975
2343.0 38 .976
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OTble 9.2 MagncLron Failure Data Prep&red for Plotting

Point Age Median
Number Rank

1 0.0 1.82
2 1.0 4.42
3 1.5 7.04
4 1.7 9.64
5 8.3 12.20

6 10.0 14.85
7 15.0 17.45
8 15.5 20.3
9 28.0 22.6

10 36.7 25.3

11 73.6 27.9
12 95.0 30.4
13 116.0 33.1
14 120.0 35.6
15 130.0 38.3

16 153.5 40.9
17 165.0 43.5
18 226.4 46.1
19 332.3 48.6
20 363.0 51.4

21 405.4 53.9
22 409.0 56.5
23 431.0 59.0
24 439.0 61.6
25 525.0 64.4

26 541.7 67.0
27 577.9 69.5
28 677.0 72.0
29 739.0 74.6
30 873.0 77.4

31 937.0 80.0
32 1144.0 82.5
33 1169.0 85.2
34 1297.0 87.7
35 1630.0 90.4

36 2088.9 93.0
37 2340.9 95.6
38 2343.0 98.2
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subpopulation, and points 36, 37, and 38 
are in the wear-

out subpopulation. Since the data are not grouped each

point represents a singla failure and Lhe 
subpopulation

sizes are found to be

N - 10

N - 25
c
N = 3

w

New median ranks are calculated based on 
these subpopula-

tion sizes and the median ranks are tabulated 
in Table 9.3.

The subpopulations are individually replotted 
in Figures

9.2, 9.3, and 9.4 and the following Weibull 
parameters are

determired:

Figure 9.2 e = 0

= 0.69

71e - 12.1

Figure 9.3 c = 0

0 = 1.25

- 620

Figure 9.4 W . 0

20
.Aw -
lf - 2310

All parameters necessary to use equation (6.1) 
have been

found. The equation can now be used to determine 
the ex-
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Table 9.3 Magnetron Failure Data Prepared for Sub- 1

Dpopulation Replot
Failure Age Median
Nuinber Rank

1 0.0 6.7
2 1.0 16.3

3 1.5 26.0
4 1.7 35.6

Early 5 8.3 45.1
Subpopulat ion 6 10.0 54.8

(N -1 0) 7 13.0 64.4
8 15,5 74.0
9 28.0 83.6
10 36.7 93.4

11 73.6 2.8
12 95.0 6.7
13 116.0 10.6
14 120.0 14.5
15 130.0 18.5
16 153.5 22.4
17 165.0 26.4
18 226.4 30.3
19 332.3 24.2
20 363.0 38.2

Useful Life 21 405.4 42.1
Subpopulation 22 409.0 46,0
(Nc - 25) 23 431.0 50.0

24 439.0 54.0
25 525.0 58.0
26 541.7 61.9 i
27 577.9 65.7
28 677.0 69.6
29 739.0 73.6
30 073.0 77.5
31 937.0 81.5
32 1144.0 85.5
33 1169.0 89.5
34 1297.0 93.4
35 1630.0 97.3

Wearout 36 2088.9 20.6
Subpopulation 37 2340.9 50.0
(Nw - 3) 38 2343.0 79.4
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pected reliability, at a given time, of a magnetron random-

ly drawn from a mixed population which is represented by

the observed sample. For example, consider t = 28 hours.

Substituting numerical values for all parameters into

equation (6.1) yields:

28-0 '69 28-0 !'25 28-0 20

10 25 3R(t) -T e + e +

= .263(.168) + .658(.979) + .079(]..000) = .767

If the sample of 38 magnetrons is representative and if

equation (6.1) is valid, a magnetron randomly drawL, at

time t =0 can be expected to have a 76.7 per cent chance

of surviving 28 hours of radiate time. Conversely, the

expected probability of failing before 28 hours of oper-

ation is hI

Qecw( 2 8 ) = 1-R (28) = 1-.767 = .233

9.3 Goodness-of-Fit

At time t = 28 hours the observed value of unre-

liability, QeCw( 2 8 ), from the te',ted sample of 38 magne-

trons is .237 (Table 9.1). The absolute difference be-

tween the observed and the expected values of unreliability

is

D = .237 - .233 = .004
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From Lhe Kolmogorov-Smirnov Table (Tabl.u 3.1) for N grcaLer

than 35, the asymptotic equations are used to find the max-

imum allowable value of D at the .05 significance level.

1.36 1.36D .-= - = 220

To fully test the proposed model for goodness-of-fit, it is

necessary to find Di at each class interval to insure that no

value of Di is greater than .220. This has been done and the

values of Qecw expected, Qecw observed, and Di are tabulated

for each failure time in Table 9.4. The maximum D. is found

to be .070. Since .070 is less than the allowable maximum

difference of .220 it is concluded that the summation model

for three failure subpopulations does meet the criteria es-

tablished in Section 5.1 for a good model. The expected and

observed cumulative failure distributions are plotted for

visual comparison in Fig. 9.5. The excellent correlation be--

tween the observed and the expected data clearly indicates

that the reliability summation model is capable of accuratt-

ly representing the reliability of mixed populations.

9.4 Analysis of Underlying Failure Cp.uses-Early Failures

Fig. 9.6 is a superposition of the subpopula-

tion failure rates based on the expected failures

from the reliability summation model. The early
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Table 9.4 Absolute Difference Between Expected and
Observed Cumulative Magnetron Failures

(Summation Model)

Time Observed Expected Absolute
Difference

t ecw~t) Qecw(t) Di
ec W ec,

0.0 .026 .000 .026
1.0 .053 .043 .010
1.5 .079 .056 .023
1.7 .105 .060 .045
8.3 .132 .144 .012

10.0 .158 .157 .001
15.0 .184 .187 .003
15.5 .210 .189 .021
28.0 .237 .233 .004
56.7 .263 .251 .012
73.6 .290 .299 .009
95.0 .316 .319 .003

116.0 .342 .337 .005
120.0 .368 .340 .028
130.0 .395 .349 .046
153.5 .421 .368 .053 '
165.0 .447 .377 .070*
226.4 .474 .426 .048
332.3 .500 .505 .005
363.0 .526 .577 .001
405.4 .551 .556 .005
409ý0 .579 .558 .021
431.0 .605 .572 .033
439.0 .631 .577 .054
525.0 .658 .629 .029
541.7 .684 .638 .046
577.9 .710 .658 .052
677.0 .736 .706 .030
739.0 .763 .732 .031
873.0 .790 .779 .011
973.0 .815 .798 .017

1144.0 .841 .844 .003
1169.0 .869 .849 .020
1297.0 .895 .868 .027
1630.0 .921 .898 .023
2088.9 .947 .924 .023

(continued)
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Table 9.4 Continued

Time Observed Expected Absolute
Difference

t Qecw(t) Qecw(t) Di

2340.9 .975 .975 .000
2343,9 1.000 .976 .024

*Maximum absolute difference

Allowable absolute difference at the .05 significance level
is found from Table 3.1 to be

1.36 w 1.36 = .220
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subpopulation exhibits a monotonic decreasing failure rate.

This is reflected in the heterogeneous population as a

decreasing failure rate during the first 100 hours of

operation. See Fig. 9.7. The non-grouped data ot Fig.

9.1 more accurately pinpoints the end of the early failure

period at 36.7 hours. Therefore, a required burn-in period

of approximately 40 hours as part of the manufacturer's

quality control program would eliminate the early failure

period prior to placing the magnetrons into the Army s7'zIly

system. [he advantages to the Army of such an arrangement

are three fold:

1. Radar down time due to faulty magnetrons woi .1

be greatly reduced with a subsequent increase in operational

readiness.

2. Fewer magnetrons would be handled ia the supply

and maintenance systems.

3. The number of magnetrons of this type required

by the Army would be reduced by approximately one fourth, a

significant savings.

Useful Life Failures

The useful life failure period extends from 40 hours

to 2000 hours and unlike the theoretical, chance failure

period it is not a purely constant failure rate period,
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Figure 9.7 shows the failure rate during useful life to

vary from a high of .14 to a lUw of ,048 failur s per 100

hours. This indicates that the useful life failure techanu-

ism is not strictly random but is a combination of two or 3

more failure mechanisms. A simple explanation of this

dependance is provided by a hypothetical and highly simpii-

fi-d iliustrative life test of automobile tires. During

the life test those tirer which thrc.w their tread are con-

sidered substendard; those which fail as a result of punc-

tures are considered chance failures; and those which fail

as a result of tread wear are considered wearout failures.

Theoretically, the failure rate of the tires undergoing

the life test is initially expected to decrease as the high

failure rate substandard tires fail and are removed from

test. The population is then expected to exhibit a con-

stant failure rate during useful life as the sole failure

mechttýiism during this period is random punctures; finally,

as the tires become bald the failure rate increases until

all the remaining tires have failed. An actual test would

vary from the theoretical example above during useful life

because the puncture failure mechanism is not, in reality,

independent of tire wear. As the tread becomes worn,

it loes thicknoss and increasingly smaller objects will be

able to penetrate and cause punctures; therefore, the
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puncture failure mechanism is not strictly random but is

aLso dependent upon tire wear.

It may be ipeculated that a similar type of de-

pendence causes the useful life of the magnetrons to exhibit

a nonmonotonic failure rate. The magnetron case is even

mrore complex than the tire example because both early ind

wearout mechanisms have sa impact during useful life.

Wearout Failures

Wearout begins at approximately 2000 hours. The

wearcut subpopulation is extremely small and only 3 magne-

trons of 38 failed during the wearout period.

Conclusion of Analysis

Approximately one fourth of the magnetrons will

fail prior to forty hours of operation. An obvious savings

would accrue to the Army in time, money, material, and

manpowe7 if these early failures could be isolated prior to

being placed in supply and maintenance channels or into

radars. This could be accomplished by reouiring the mmau-

facturer to pruvi•r a forty hour burn-in period before

releasing magnetrons 'or operational use.



CHAPTER 10

COMPARISON OF PRESENT AND PROPOSED MODELS

10.1 Weibull Model of Magnetron Failures

In the past It has been expedient to model observed

failure rate data with simple expressions capable of por-

traying only monotonic failure rates. Inherent in this

measure is the assumption that a component population will

not exhibit both decreasing and increasing failure rates

during the span of population life. In the case of the

magnetron data presented in Chapter 9 both government and

industry have accepted the Weibull distribucion with

0 .63, 1 - 520, and I- 0 as an appropriate model (Fig-

ure 10.i). Since 0 is less than unity, a monotonic de-

cre!asing failure rate is indicated during the entire

magnetron life. This state of affairs is contradictory te

classic reliability theory and defies either practical or

theoretical explanation. Nevertheless, the Weibull model

with the indicated parameters can be shown to fit the ob-

served failu:e data at the .05 significance level using

the. Kolmogorov-Smirnov Te3t for goodness-of-fit (Table 10.1).

119
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Table 1.0.1 Absolute Difference BeLween ExpecLed and,

Observed Cumulative Magnctron Fail ures
(Weibul 1 Distribution)

T i 1UC ObsC r1ved. lxpcc L ci A , Io u i. ,
Di Il fcrc Lc,

L Q (L) Q(L) i.

0.0 .026 .M00 .026
1.0 .053 .019 .034
.5 .079 .025 .054

1.7 .105 .027 .078
8.3 .132 .071 .061

10.0 .158 .080 .078
15.0 .1.84 .102 .082
15.5 .210 .104 .106*
28.0 .237 .147 .090
36.7 .263 .172 .091
73.6 .290 .253 .037
95.0 .316 .290 .026

116.0 .342 .322 .020
120.0 .368 .328 .040
130.0 .395 .341 .054
153.5 .421 .371 .050
165.0 .447 .384 .063
226.4 .474 .447 .027
332.3 .500 .530 .030
363.0 .526 .549 .023
405.4 .551 .575 .024
409.0 .579 .577 .002
431.0 .605 .589 .016
439.0 .631 .593 .038
525.0 .658 .634 .024
541.7 .684 .642 .042
577.9 .710 .657 .053
677.0 .736 .693 .043
739.0 .763 .713 .050
•73.0 .790 .750 .040
037.0 .815 .765 .050

1144.0 .841 .807 .034
1169.0 .869 .811 .058
1297.0 .895 .831 .064
1630.0 .921 .871 .050
2088.9 .947 .909 .038
2343.9 .975 .924 .051
2343.0 1.000 .924 .076

Maximum absolute difference .106

Allowable absolute difference at the .05 significance level
is found from Table 3.1 to be

1.36 1.36 - .220

78-
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saLisfacLory expression [or fitting an curve to Lhc ob!s(2rvc(I

magnetron failure date. However, the model provides little

insight into the mechanics of failure and .aould not be of

great use in either reliability improvement or theoretical

speculation because of its inexplicable monotonic decreas-

ing failure rate.

10.2 Comparison of Goodness-of-Fit

Figure 10.2 provides a comparison of the expected

cumulative failures as determined by both the proposed

and the standard Weibull models. As might be expected,

because of the larger number of parameters the proposed

model fits the observed data more closely than does the

standard Welbull distribution. While the Weibull data is

seen to fall below tbe observed cumulative data after 500

hours o& radiate time the summation model closely ap-

proximates the observed data throughout the entire span of

component life. The maximum absolute difference between

expected and observed cumulative failures is .070 (Table

9.4) for the proposed summation model and .106 (Table 10.1)

fo-" the Weibull distribution. The allowable maximrrm

difference at the .05 sign:ficance level for the Kolmo-

qorov-Smirnov goodness-of-fit test is .220. This indicates

that both models are adequate at the .0 'i•nifiLancC level
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for curve fiLting purposes, although the proposed model is

the more accuraLe of Lhe two.

10.3 Cornarison of Failure Rate

At this point one might question the use of a com-

plex model to gain uxtrequired .!--uracy when the more simple

Weibull distribution has been shown to be sufficient. The

answer l.as in the analysis of th.ý failure rate curves of

the two expressions. The Weibull failure rate is monotonic

decreasing (Figure 10.3) which is inconsistent with relia-

bility theory. The proposed model failure rate is, on the

other hand, nonmonotonic: first decreasing, then showing a

slight i~ncrease and decrease, followed by a dramatic in-

crease which continues to the end of component life (Figure

1.0.3). Since the proposed model has been shown to be a

more accurate model of observed data it is logical to as-

sume that the failure rate behavior described by the sum-

mation model is also more accurace. Since the failure rate

of the summation model relates fairly welt to reliability

theory, the model becomes useful for theoretizal specula-

tion concerning failure cause.

10.4 Comparison of Analytical Power

Figure 10.1 is the standard method of plotting fail-

ure data and obtainirg a strat.•,'it line fit. The fact That
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the straight line does not f-.t well at the tails of the data

is usu&lly ignored or considered inconsequenLI.a1 as IL was

in this case. Figure 9.1 is Lhe same failure data, but this

time with three straight lines fit to it. The theoretical

basis for the three lines was e-tablished in Section 5.3.

The advantages of using the reliability sutmmation rule rerth-

er than the commonly used monotonic failure rate distr•;"u-

tions are:

1. The proposed expression models failure data

more accurately than expressic-As currently being used for

this purpose.

2. 1he proposed technique is sufficiently flexible

to model data that cannot be modeled by the usual statistical

methods. Human mortality is an example of this.

3. The proposed model yields information about

failure cause which is obscured by present metheds. For

example, no wearout was evident iii the Weibull plot of

magnetron failures; whereas, the summation model ýndicates

a wearout period extending from 2000 to 2500 hours. Further-

more the Weibull plot gives no indication of when the burn-

.n or early period ends sin(, the entire Weibull failure

rate curve is monotonic decreasing. The summation model,

on the other hand, definitely indicates that burn-in is

terminated after 191 hours of operation. This is important
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information for managers as well as theoreticians and it

is totally obscured by present modeling techniques,



CHAPTER 11

SUM1ARY AND RECOMMENDATIONS

11.1 SinMar,

In Lhis reporL three unified expressions have been

considered to see which best. descr-hbes the reliability of

components drawn randomly from a population of components

exhitLtiAng fa-iures of the early, chance, and wearout type.

The p:. dum. moce],

R (wt)t 7. q (t)e R (t) a (t) (5.2)

was elinminated because it indicates incorrectly that the

unified reliability is zero after the population is burned

in.

The cenbined summation and product model

N N
R (t) - R (t) -i -2 R (t) Rw(L) (5.16)
.2cw N e N c w

appears to ba theoretically sourd but no analyticý r ri s

cf determining the individual reliabilities R C(t) xnd R w(t)

from observed failure data was found withc.ut combinlng thc"

128
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IjtLo Lhe single reliability RG(t) = R (t) Fw(t). Unfor-
GC W

tunately, this combination destroys the usefulness of the

expre.ssion as a tool for analysing the individual chance

and wearout failure modes.

less sound theoretically but perhaps more useful

than the combined model is the summation model,

N N N
R (t) - N Re (t) + -- R (t) + w R (t) (5.9)

It is loss sound because its basis is that there are three

individual failure subpopulations, which is not quite true.

Theoretically, there are only two failura subpopulations,

the substandard and the good. Tne substandard population

providing early failures and the good subpopulation provid-

ing both chance and wearout failures. This means that wearout

is not a sepan&te subpopulatiorn and components must survive

the chanze period in order to deteriorate and eventually be-

cte a wearout failure. If wearout was in fact a separate

subpopulation, components belonging to this subpopulation would

not be subjected to the chance failure wnchaiism. However, even

witn this theoretical limitation, the summation model does

correlate welF with observed data and it is the only model

of the three considered which provides specific information
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concerning all three failure modes.

In comparison with present modeling techniques the

suMmation model was shown to be superior in three ways:

1. It is more accurate than methods prv.sently in

use.

2. It's greater flexibility permits the modeling

of data which is beyond the capabilities of present statis-

tical methods.

3. It yields important information for use by

managers as well as theoreticians concerning failure periods

and underlying failure causes i.nformation which is ob-

scured by present modeling methor's.

11.2 Recommetidations

It has been shown ii, this thesis that the proposed

summation model, with graphically determined subpopulation

sizes and tweibull parameters, may be used very satisfac-

torily to represent observed failure data at the .05 sig-

nificance level using the Kolmogorov-Smirnov TesL. Further,

it has been demonstrated that the proposed model offers

significant advantages over present trodeling techniques.

Therefore, it is recommended that the reliability summation

moael be adopted for use in those cases in which failure

data ew--omp~ss the three failure periods: e-irly, chance,

and wasrout. This might include complex systems such as
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tanks and mechanical components such as fuel. pumps in

addition to electronic components.

The adoption of the proposed modeling technique

should result in a better analysis of the manufacturer's

quality control; it would pinpoint the required burn-in

period and the time at which wearout begins; and this know-

ledge, effectively appLied, would reduce the number of sub-

standard components accepted by the military services and

subsequently placed into the respective supply systems.

With fewer unreliable repair parts or components available

in supply channels, maintenance required on end items would

gc down while operational readiness would increase. In

the examile of magnetrons used by the Army it was chown

that approximately one quarter of the type inagnetroni con-

sidered were unreliable and failed shortly after installa-

tion into operational radars. Had the methods proposed in

this thesis been employed, -An additiunal burn-la period

would have been required of the manufacturer and the un-

reliable magretrons woula have tailed prior to entry into

the Army supply systen, with a rcsultont qavings in money,

manpower, storage ane transporttion requirements, and an

increase in end ite•n operational readiness.
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APPENDIX A

ATTEMPTED EXTENSION OF KAO'S METHOD FOR

GRAPHICAL ESTIMATION OF MIXED WEIBUIL

PARAMETERS (18)

In order to use equation (6.1) to compute component

reliability, it is first necessary to find the thrce sub-

population sizes Nep Nc, and Nw and the respective Weibull

parameters Ife Obp ict O', 0 4c , ow and)?(. Kao

(18) suggests a method for finding certain of these para-

meters for the case of two subpopulations. An unsuccessful

attempt was made to extend Kao's graphical procedure to the

case of three subpopulations. The steps of the attempted

extended procedure are given, followed by a discussion of

the problems which arise in their use. The human mortality

data of Chapter 7 are used to illustrate the procedure. The

steps arc:

1. TUbulate the median ranks of the mixed popula-

tion for each class interval (Table 7.2) and plot the data

on Weibull probability paper (Fig. A.1).

2. Fit three straight lines to the plotted data by

132
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by visual inspection and designate the lines

N N N
Qe~qand It (Fig. A.l1).N

3. Extend the - line until it intersects the
N

upper border line (99.P% line). From this intersection

drop a vertical line, designated t 1 0 0 , representing the

estimated time at which 100 percent of the components will

have failed (Fig. A.1).
N

4. Extend the -- Q' line upward until it inter-
N e

sects the t 1 0 0 line. The height of this intersection read
N

on the percent failure scale gives the estimate of N e in

percent (Fig. A.1).
N

5. Extend the -R Q line upward until it inter-
Nc

sects the to line. The height of this intersection read
N +N

on the percent failure scale gives the estimate of eN C

in percent (Fig. A.1).
N N N

6. Since R+ + 1 the three subpopulation

sizes Net Nc, and N are readily determined.
e C w

7. -he location parameter for each subpopulation
N N

is determined by extending the lines -Qe'' NEQ' and
N N eN

W- downward until thty intersect the time axis (abscissa).

The individual values are the times read at these inter-
N N

sections. Normally, the N-I Q; line and the N Q' line will

not intersect the positive time axis and in this case

S- - C (Fig . A.1).
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8. Categorize the failures by relating them to

the particular subpopulation line upon which they fall.

If' a point falls on or near both lines it may be incilu.led

in both subpopulations.

9. Sufficient informution has now been detcr-

mined from the observed failure data to separate the mixed

population into its three constituent subpopulations.

Calculate new median ranks by considering the subpopula-

tions individually (Table A.1). Plot the median ranks

versus the individual t-V'values with t as determined in

Step 7 (Fig. A.2).

10. Fit three straight lines to the subpopulation
N N Ne q,and w

plots and designate the lines N e' N c N

respectively (Fig. A.2).

11. Find the individual values of?1 and A for each

subpopulation using the method described in Section 3.3

(Fig. A.2).

The following parameters are now aetermined:

NN e .062, e , Pe " .65,97e - 49

N
N . 8, 0 , 2.5, - 57

N 7 50 -. 5 -, 2o. P, - 9 " ,,." 54
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Table A.1 Mortality Data Prepared for Subpopulation
Replot (Extended Method)

Point Age at Subpop- Subpop- Subpop-
Number Class ulation ulation ulation

Inter- Values Cumula- Median
val for tive Ranks
End Failures
Point

t t- V N (t) M.R.

Early
Subpopulation 1 5 5 13 20.3
(Ne=62,, -U0 2 10 10 19 30.0

Chance 3 15 15 6 3.0
Subpopulation 4 20 20 14 7.3
(Nc-1 8 8 ,1cO) 5 25 25 23 12.0

6 30 30 33 17.4
7 35 35 44 23.2
8 40 40 57 30.1
9 45 45 76 40.1

Wearout 10 50 30 29 3.8
Subpopulation 11 55 35 72 9.6
(N w-750,v 54--20) 12 60 40 135 18.0

13 65 45 225 30.0
14 70 50 346 44.0
15 75 55 492 65.5
16 80 60 642 85.6
17 85 65 774
18 90 70 858
19 95 75 895
20 109 80 S05
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Table A.2 is a tabulation of the observed Qecw'

the expected Qecw' and the absolute difference Di com-

puted at each class interval end point. The maximum value

of Di is .124 which is greater than the maximum allowable

of .043 at the .05 signi.s"4ince level. It can be concluded,

therefore, that the parameters found by the extended method

do not describe the cbserved data at the .05 signif1can-e

level.

Two problems associated with the extended method

have been isolated:

1. There is no apparent justifi"ation for using

the t parameter as a delay factor rather than for curva-

ture correction as suggested by most writers in this area.

Furthennore, the determination of the I parameter from the

mixed plot rather than from the subpopulation replots

unnecessarily limits the flexibility of the Weibull equa-

tions. This criticism pertains to both the original and

the extended Kao procedures.

2. In the extended procedure Lhe approximation

of the subpopulation sizes is quite inaccurat,. This re-

suits in inaccurate vAlculotion of subpopulatton median

ranks which leads directly to inaccu'rate scale arnd shape

parameters. In Addtion, points which indicated median

ranks greater than 100 p-rcent were lost for plotting
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Table A.2 Absolute Difference Between Expected and
Observed Cumulative Mortality Data (Expected
Data Determined by the Extended Methcd)

Age Observed Expected Absolute
Difference

t Qecw(t) Qecw(t) Di

5 .013 .013 .000
10 .019 .021 .002
15 .025 .029 .004
2., .033 .040 .007
25 .042 .052 .010

30 .052 .066 .014
35 .063 .083 .020
40 .076 .102 .026
45 .095 .126 .031
50 .124 .159 .035

55 .167 .209 .042
60 .230 .287 .057
65 .320 .401 .081
/0 .441 .5,'0 .109
75 .587 . ?11 .124*

80 .737 .849 .112
85 .869 .935 .066
90 .953 .970 .017
95 .990 .981 .009

100 1.00( .984 .016

*Maxi=um absolute difference

Allowable absolute difference at the .05 sigr.if:r.ance

level is found from Table 3.1 to bc:

I..041.3 - .043
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Table A.3 Comparison of Weibull Parameters Determined
By Two Different Methods

Extended Method Method of Chapter 7

N - 62 N - 19
e e

N - 188 N - 76
C C

N - 750 N - 905
w w

4 0

If = 20 0f
~'w- 2 0

4t "•9 -4.85
S•¢ "57 • "35.9

54 71 - 77.5

.-65 -t 1.6
e e

2.5 ~ 1 ~2.81

5. - 7.2
54'=I
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purposes, Table A.3 provides a compa-ison of the para-

meters as determined by the extended method and the method

suggested in Chapter 6.

0r rr~



APPENDIX B

BASIC LANGUAGE COMPUTER PROGRAMS FOR APPLYING THE PROPOSED

RELIABILITY SUMM4ATION MODEL WITH KNOWN THEORIZED, OR GRAPH-

ICALLY ESTIMATED PARAMETERS.

(The programs included in this Appendix are samples of the

programs used to analyze magnetron failures in Chapter 9

and would require modification to be of more general use.)

142
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10 READ N,E,BINI,C,B2,G2,N2,W,B3,G3,N3
11 LET T-100
15 PRINT N
16 PRINT E,BI,Gl,N1
17 PRINT CB2,G2,N2
18 PRINT WB3,G3,N3
19 PRINT "38 MAGNETRON FAILURES GROUPED DATA 100 HR CLASS

INTERVAL"
20 PRINT
22 LET qI-O
30 LET AI-(T-G1)/N1
35 IF ADO0 THEN 40
36 LET AI-0
40 LET A2-(T-G2)/N2
45 IF A210 THEN 50
46 LET A2-O
50 LET A3"(T-G3)/N3
55 IF A3)'O THEN 60
56 LET A3-O
60 LET A4-AltBI
70 LET ASA2tB2
80 LET A6-A3tB3
82 LET R8-1-41
90 LET R1-EXP(-A4)
100 LET R2-EXP(-A5)
110 LET R3-EXP(-A6)
120 LET R4-(E/N)*R1
130 LET R5-(C/N)*R2
140 LET R6=(W/N)*R3
150 LET R7-R4+R5+R6
160 LET Q1-I-R7
162 LET F1-R8-R7
164 LET LI-Fl/R8
169 PRINT
170 PRINT "AGE-"T
180 PRINT "R-"R8,"PDF-"F1,"Q-"Q1
181 PRINT "FR-"L1
133 PRINT "RE-"Rl,"RC-"R2,"RW-"R3
190 LET T-T+100
200 IF T.'2500 THEN 900
210 GO TO 30
220 DATA 38,10,.69,0,12.1,25,1.25,O,6203,20,O02310
900 END
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10 READ N,EB1,G1,N1,CB2,G2,tt2pWB3,G
3,N3

15 PRINT N 
1

16 PRINT E,B1,GlNI
17 PRINT C,B2,G2,N2
18 PRINT WtB3,G3,N3

19 PRINT "38 MAGNETRON FAILURES 
UNGROUPED DATA"

20 PRINT

21 DIM T(40)

22 FOR I1l TO 38
23 READ T(I)
30 LET Alm(T(I)'G1)/Nl
35 IF A1),O THEN 40
36 LET Al-0
40 LET A2-(T(I)hG2)/N

2

45 IF A2),0 THEN 50
46 LET A2-0
50 LET A3(~)G)N

705IF A3110 THEN 60
56 LET A3-0
60 LET A4-AlfB1
70 LET A.5A2tB2
80 LET A6-A3fB3
82 LET R8-1-Q1
90 LET Rl-EXP(-A4)

100 LET R2-EXP(-A5) I
110 LET R3-EXP(-A6)
120 LET R4-(E/N)*RI
130 LET R5-(C/N)*R2
140 LET R6m(W/N)*R3
150 LET R7-R4+R5+R6
160 LET Ql-1-R7
162 LET Fl-R8-R7
164 LET Li-Fl/RB
169 PRINT
170 PRINT "AGE-"T(1)
180 PRINT "R-"RB,wIPDF-"F1,"QIEI"Qi
181 PRINT "FR-"Ll
185 PRINT "R-RR-RR-R
190 NEXT I
191 GO TO 23

220 DATA 38,10, .69,O,12.192591.25,O,620,3,2OO,2310
300 DATA 01151783lt~l.o83.,369

AT ,L d.4,3i1,639243.,.*.
3 405.4'04099 431

320 DATA 439,525,541.7,577.99677,739987399370 
1144,1169,1297

330 DATA 1630t2088. 9t2340.9,2343
900 END
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